Example of mask filter in postpro?
-
The typical workflow is to first build the postprocessing pipeline in the GUI, then use the "To Python" tool (available from the right-click contextual menu) to generate the corresponding Python script.
For the mask filter + SAR statistics, it would give something like this:
import numpy import s4l_v1.analysis as analysis import s4l_v1.document as document import s4l_v1.model as model import s4l_v1.units as units from s4l_v1 import Unit # Creating the analysis pipeline # Adding a new SimulationExtractor simulation = document.AllSimulations["Dipole (Broadband) - Copy"] simulation_extractor = simulation.Results() # Adding a new EmSensorExtractor em_sensor_extractor = simulation_extractor["Overall Field"] em_sensor_extractor.FrequencySettings.ExtractedFrequency = u"All" em_sensor_extractor.Normalization.Normalize = True em_sensor_extractor.Normalization.AvailableReferences = u"EM Input Power(f)" em_sensor_extractor.SurfaceCurrent.SurfaceResolution = 0.001, units.Meters document.AllAlgorithms.Add(em_sensor_extractor) entity1=model.AllEntities()['Sphere 1'] # Adding a new FieldMaskingFilter inputs = [em_sensor_extractor.Outputs["EM E(x,y,z,f0)"]] field_masking_filter = analysis.core.FieldMaskingFilter(inputs=inputs) field_masking_filter.SetAllMaterials(False) field_masking_filter.SetEntities([entity1]) field_masking_filter.UpdateAttributes() document.AllAlgorithms.Add(field_masking_filter) # Adding a new SarStatisticsEvaluator inputs = [field_masking_filter.Outputs["EM E(x,y,z,f0)"]] sar_statistics_evaluator = analysis.em_evaluators.SarStatisticsEvaluator(inputs=inputs) sar_statistics_evaluator.Snapshot = u"3e+08" sar_statistics_evaluator.StdDev = False sar_statistics_evaluator.TotalLossyVolume = False sar_statistics_evaluator.VoxelCount = False sar_statistics_evaluator.LossyVoxelCount = False sar_statistics_evaluator.UpdateAttributes() document.AllAlgorithms.Add(sar_statistics_evaluator)